ZADÁNÍ LABORATORNÍHO CVIČENÍ

TÉMA

Určení voltampérových charakteristik spotřebičů

ÚKOLY

Proměřte závislost proudu na napětí u žárovky a třech technických rezistorů a termistoru. Sestrojte jejich voltampérové charakteristiky a vzájemně je porovnejte.

ΡΟΜŮϹΚΥ

Měřené spotřebiče:

- malá žárovka (6 V, 0,5 A) s objímkou
- rezistor (10 Ω, max. příkon 2 W) barevné označení hnědá, černá, černá, zlatá
- rezistor (15 Ω, max. příkon 2 W) barevné označení hnědá, zelená, černá, zlatá
- rezistor (22 Ω, max. příkon 2 W) barevné označení červená, červená, černá, zlatá
- termistor NTC s označením B57164K0101 (max. příkon 0,45 W)

Ostatní součástky:

- reostat 100 Ω, 1,25 A
- zdroj stejnosměrného napětí (plochá baterie 4,5 V)
- vodiče a krokosvorky

Měřící systém Neulog:

- software Neulog
- senzor napětí (Voltage)
- proudový senzor (Current)
- modul USB

případně další moduly (pro bezdrátové připojení):

- modul baterie (Battery)
- digitální zobrazovací modul
- 2 rádiové komunikační moduly (RF)

ÚVOD

Voltampérová charakteristika spotřebiče je graf závislosti proudu, který prochází spotřebičem, na napětí na spotřebiči, tj. I = f(U). Při vyšetřování této závislosti regulujeme napětí na spotřebiči nejčastěji pomocí potenciometru v zapojení podle obrázku. Svorkové napětí zdroje se rozloží na vodiči potenciometru a na spotřebiči naměříme jen jeho část, která závisí na poloze pohyblivého kontaktu (jezdce) potenciometru.

Při průchodu proudu spotřebičem vzniká Joulovo teplo a spotřebič se zahřívá. Závislost odporu spotřebiče na teplotě má vliv na průběh charakteristiky.

Technické rezistory jsou vyrobeny z materiálu s malým teplotním součinitelem odporu a mají velký povrch, takže se zahřívají jen málo. Proto jejich odpor prakticky nezávisí na napětí a voltampérová charakteristik je grafem přímé úměrnosti – platí Ohmův zákon.

Žárovka má wolframové vlákno s malým povrchem, které se průchodem proudu silně zahřívá a jeho odpor za provozu je několikrát větší než za studena. Proto se voltampérová charakteristika žárovky zakřivuje dolů.

Termistor je vyroben z polovodičového materiálu, jehož odpor se s rostoucí teplotou rychle zmenšuje. Proto je jeho charakteristika zakřivena nahoru. U termistorů musíme počítat s určitou setrvačností. Změníme-li proud, ustálí se teplota termistoru na nové hodnotě až za několik desítek sekund.

SCHÉMA:

POSTUP:

- 1. Sestavíme obvod dle schématu.
- 2. Sestavíme a připojíme měřící systém Neulog dle následujících možností:a) připojení systému USB kabelem k počítači

b) bezdrátové připojení systému k počítači

3. Spustíme program Neulog a zkontrolujeme, zda jsou senzory identifikovány (*Okno modulu* zobrazuje senzor napětí a proudu)

- 4. Klikneme na ikonu *Pokus s připojením* na hlavní liště programu. 3000 5. Dále vybereme ikonu Nastavení programu pak klikneme na záložku XY Graf. <u>NeuLog</u>[™] uron Sensors Network Technology 12 💌 🤝 🔐 P.M. 5 more * S Att ×
- 6. Vybereme volbu Měření a nastavíme Napětí

Nastavení pokusu - XY Graf
Volby Graf Spouštění XY Graf
osaX
🔘 Čas

7. Ve stejném okně vybereme záložku Volby a zatrhneme parametr Tabulka a okno zavřeme.

Nastavení pokusu - Volby 🔹									
Volby Graf Spouštění XY	Graf								
<u>Zobrazení</u>									
l Tabulka I Graf									
Délka trvání pokusu	🖌 10 sekund 📃								
Vzorkování	🖌 10 za sekundu 🔄								

8. Na pracovní ploše se zobrazí graf závislosti proudu na napětí a tabulka pro naměřené hodnoty.

Okno modulu	NeuLo	g ™ _{Ne}			Network	Techno	ology	Ş	Ó. 🛃 🖞	ĴĮ,	X	•	>			l	3 2	×					
Napětí 1 0,00 v		(J.	4	**	% ***	** **	P	. 🚧 🖗		<u>*</u>	4	ê	*		ø	- P	<					
								Ne	uLog									×				Tabul	a
Broud																Čas	ľ	Vapětí 1	Proud 1	Ručně nastavené h			
1															-1								
	2 400																	1					
	2 000 -																						
	1 600 1 400																						
	1 200 1 000 -																						
	800 - 600 -																						
	400 - 200 -																						
	P 0 - 2 -200 -																						
	-400 -600																						
	-800 - -1 000 -																						
	-1 200 -1 400																						
	-1 600 -1 800 -																						
	-2 000 -2 200																						
	-2 400	-18	-16	-14	12 .10		6		-2 0 2		6	8	10	12	14	16	18	20		_			
		-10	-10		-12 -10		~	-	Napětí 1 [V]		°.		10	12		10	10	~					
		_			_																		

- 9. Potenciometrem nastavíme nejmenší hodnotu napětí a stiskneme tlačítko *Jeden krok* Vlastní záznam dat provádíme v režimu jednotlivých měření.
- 10. Dále posuneme jezdec potenciometru a opět stiskneme tlačítko Jeden krok
- 11. Tento postup opakujeme a zaznamenáme v pravidelných odstupech cca 15 hodnot.
- 12. Získané hodnoty napětí a proudu se zobrazují v tabulce.
- 13. Pro optimální rozsah hodnot na osách grafu stiskneme ikonu Optimalizace zvětšení
- 14. V grafu se zobrazí body, které odpovídají naměřeným hodnotám proudu a napětí.
- 15. V případě, že chceme měření smazat, zvolíme ikonu Vymazat výsledky pokusu
- 16. Jednotlivé body v grafu můžeme propojit čárou pomocí ikony Změnit na čárový graf 🖾
- 17. Jednotlivými grafy též můžeme proložit odpovídající křivku, která vyjadřuje závislost proudu na napětí pro danou součástku.

Klikneme na ikonu Zobrazit funkce a v záložce Funkce vybereme v první nabídce Proud a ve druhé Lineární optimalizaci a stiskneme tlačítko Vypočítat funkci.

18. Naměřená data můžeme vyexportovat do programu Excel pomocí tlačítka E Data se uloží jako soubor s příponou **.xls*. S těmito daty pak můžeme pracovat v tabulkovém editoru a sestrojit VA charakteristiky jednotlivých spotřebičů.

19. Vytvořenou VA charakteristiku můžeme vytisknout přímo v programu Neulog pomocí tlačítka

- 20. Měření opakujeme i s dalšími součástkami (žárovka, 3 rezistory o různých hodnotách odporu a termistor). Před jeho spuštěním se původní naměřená data odstraní.
- 21. Vytvořené VA charakteristiky porovnáme s teoretickými předpoklady a popíšeme rozdílné chování jednotlivých spotřebičů.

TECHNICKÁ ÚSKALÍ

- Je třeba dbát na polaritu zapojení ampérmetru a voltmetru, při špatném zapojení se budou zobrazovat hodnoty se záporným znaménkem.
- Dále je třeba dát pozor na dobré kontakty při spojování vodičů, jinak se může stát, že hodnoty napětí a proudu neustále "přeskakují".